
Ciclo de Debates sobre Petróleo e Economia

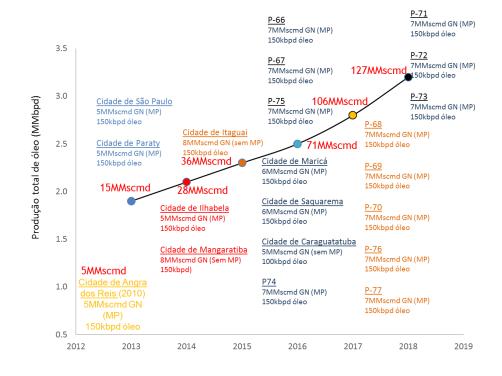
Gás do Pré-sal: tanto, tão distante, e tão rico em CO₂. *Pre-salt gas: so much, so distant, and so rich in CO*₂.

Autores: Ofélia de Queiroz F. Araújo e José Luiz de Medeiros Authors: Ofélia de Queiroz F. Araújo e José Luiz de Medeiros

Planejamento estratégico x FPSO / Strategic Plan x FPSO

(1) (http://www.petrobras.com/data/files/8A512A054373CE4101447376AA186289/Webcast-2030-Strategic-Plan-and-2014-2018-Business-Management-Plan.pdf

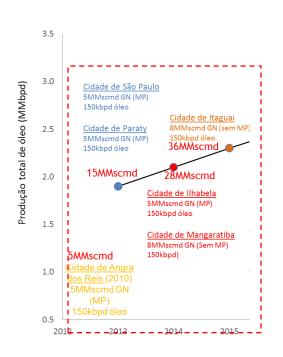
(2) Araújo, O. et al., Comparative analysis of separation technologies for processing carbon dioxide rich natural gas in ultra-deepwater oil fields, Journal of Cleaner Production (2016), http://dx.doi.org/10.1016/j.jclepro.2016.06.073

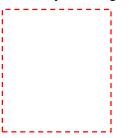


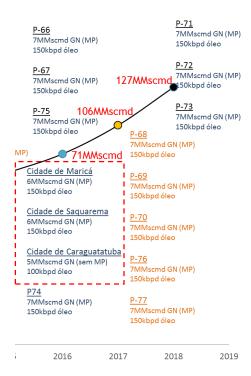
FPSOs Replicantes / Replicants FPSOs

Projeto Replicante: (1)

- GOR (gas to oil ratio) = 250m³ gás/m³ óleo
- 150000 bpd
- 6MMm³d gás bruto contendo 40% CO₂ no gás
- Tem capacidade para injetar todo o gás produzido ou apenas o CO₂ separado.



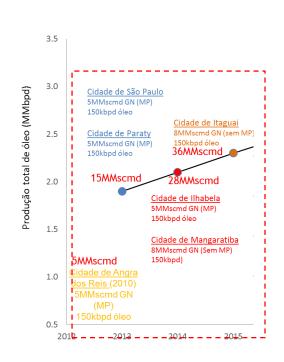




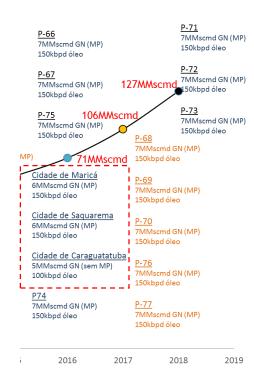
Do plano à realidade pós 2015 / From Plan to post-2015 reality

Estão em operação⁽¹⁾:

9 FPSOs 43MMm³d



(1) http://www.petrobras.com/pt/magazine/post/fpso-cidade-de-marica-entra-em-operacao-no-pre-sal-da-bacia-de-santos.htm


Do plano à realidade pós 2015 / From Plan to post-2015 reality

Setembro/2016:

A produção do pré-sal, oriunda de 66 poços, foi de **46,1 MMm³d** de gás natural.(ANP)⁽¹⁾

A produção brasileira de gás natural foi de 110,4 MMm³d. (ANP) (1)

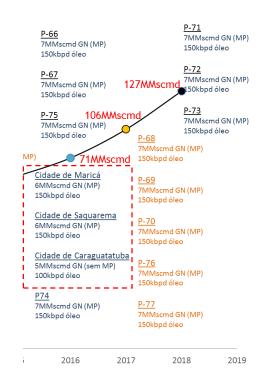
(Capacidade de projeto)

9 FPSOs

43MMm³d



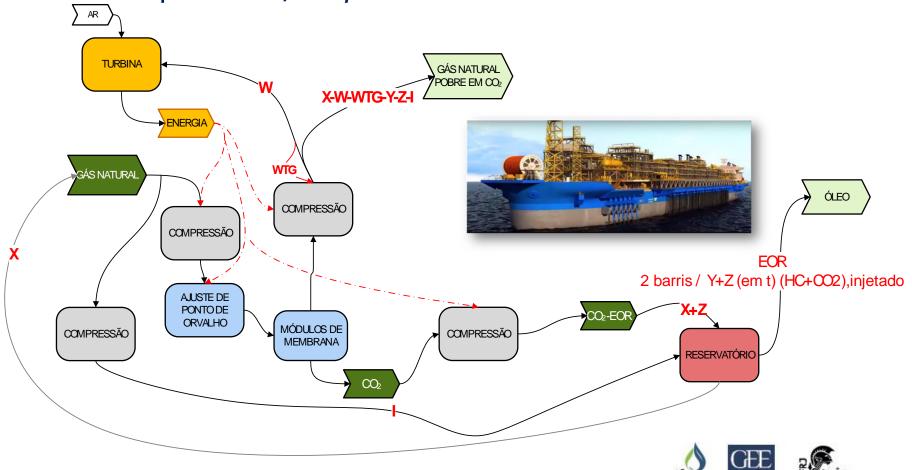
(1) www.anp.gov.br/wwwanp/images/publicacoes/boletinsanp/boletim_de_setembro-2016.pdf. **Boletim da Produção de Petróleo e Gás Natural**, [Setembro 2016 / Número 73]


Do plano à realidade pós 2015 / From Plan to post-2015 reality

46,1 MMm³d

110,4 MMm³d.

42% da produção brasileira?



FPSO Replicante / Replicant FPSO

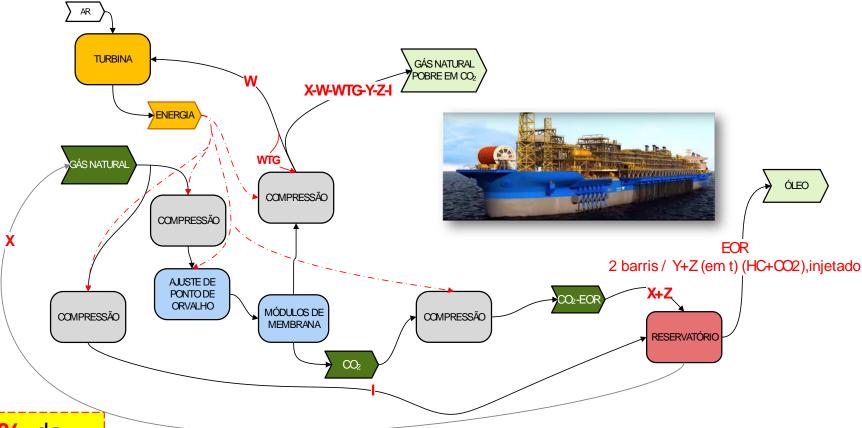
Geração na Turbina a gás da FPSO / Power generation in FPSO's gas turbine

- **Projeto** Replicante contempla **75MW** (+25MW spare) de capacidade de geração de energia para uso próprio (1).
- A título de comparação, Moçambique e Zambia contrataram termelétrica flutuante com 100mW de capacidade de geração.
- A cidade de Mutare (na África), com 260mil habitantes necessita 200MW por dia. Ou seja, **75MW atenderiam** 97.5mil habitantes de Mutare.
- Considerando que a média brasileira é o https://www.esi-africa.com/news/mozambiquetriplo da média africana, 75MW atenderiam o consumo de 32mil brasileiros.

22 MARCH 2016

Turkey-based Karadeniz Holding is to supply Mozambique and Zambia with 100MW through a floating power station, aunched over the weekend by

launches-100mw-floating-power-station/



Estimativa do gás exportado / Exported gas estimate

42% da produção brasileira?

FPSO Replicante / Replicant FPSO

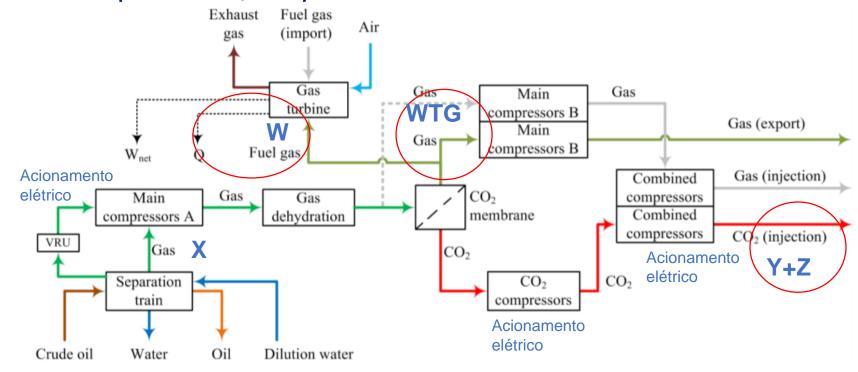
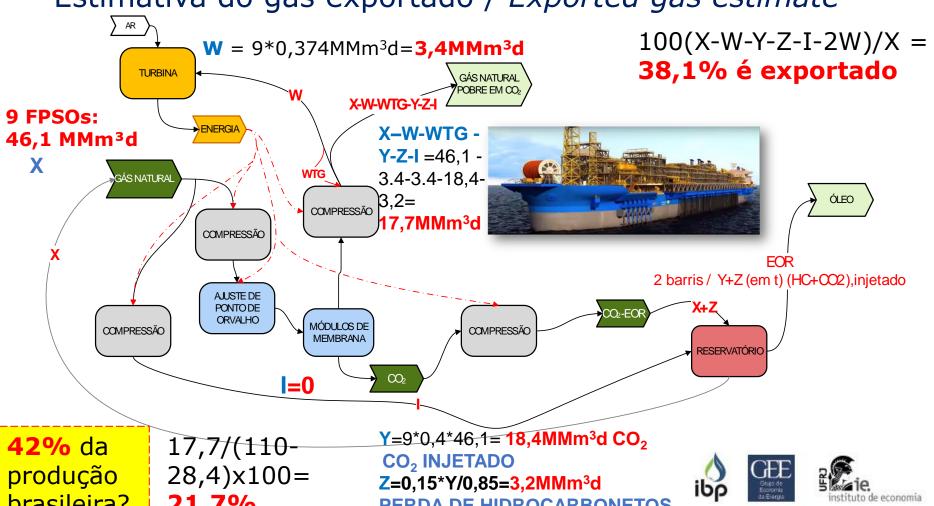


Table 5. Power consumption [kW] and percentage for FPSO systems

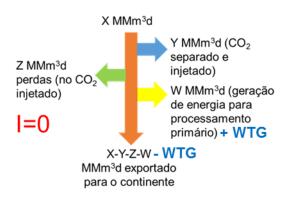
	Separation		Separation VRU		MC-A		МС-В			CO_2		CC				
	proc	cess	VI	CO	MC	A	Inje	ction	Ехр	ort	compre	ession	G	as	C	O_2
Mode 1	34	0.2	314	2.1	6283	42.8	5076	34.6	-	-	-	-	2959	20.2	-	-
Mode 2	86	0.5	788	4.4	7126	40.1	3057	17.2	2581	14.5	2176	12.2	1604	9.0	347	2.0
Mode 3	192	0.4	2048	4.7	19928	45.5) -	-	19886	45.4	1508	3.4) -	-	241	0.6

WT ≅ **WTG**



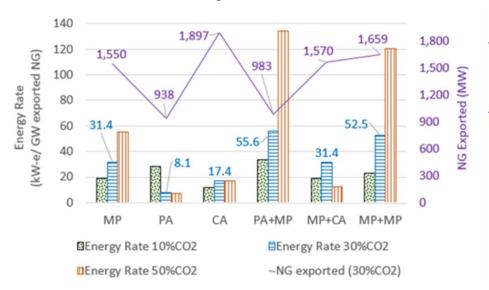
Estimativa do gás exportado / Exported gas estimate

brasileira?


21,7%

PERDA DE HIDROCARBONETOS

FPSOs Replicantes / Replicants FPSOs



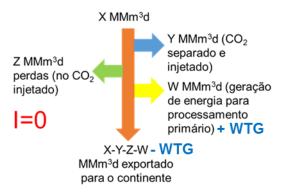
(X-Y-Z-W-WTG)/X = ?

Depende de:

- Teor de CO₂ no gás bruto
- Tecnologia de separação de CO₂

6MMm³d de gás natural bruto

Araújo et al., Comparative analysis of separation technologies for processing carbon dioxide rich natural gas in ultra-deepwater oil fields, Journal of Cleaner Production (2016), http://dx.doi.org/10.1016/j.jclepro.2016.06.073



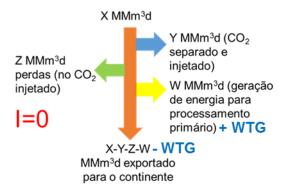
FPSOs Replicantes / Replicants FPSOs

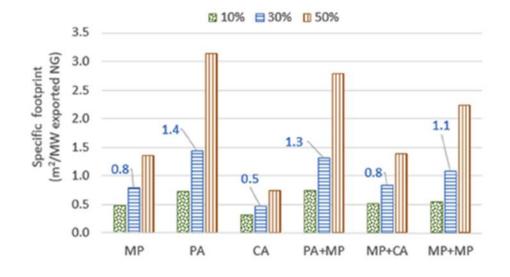
(X-Y-Z-W-WTG)/X = ?

Depende de:

- Teor de CO₂ no gás bruto
- Tecnologia de separação de CO₂

Araújo et al., Comparative analysis of separation technologies for processing carbon dioxide rich natural gas in ultra-deepwater oil fields, Journal of Cleaner Production (2016), http://dx.doi.org/10.1016/j.jclepro.2016.06.073



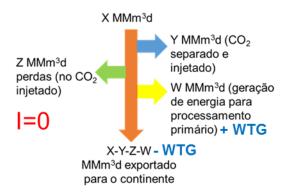

FPSOs Replicantes / Replicants FPSOs

(X-Y-Z-W-WTG)/X = ?

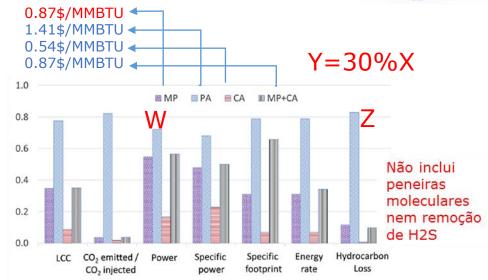
Depende de:

- Teor de CO₂ no gás bruto
- Tecnologia de separação de CO₂

Araújo et al., Comparative analysis of separation technologies for processing carbon dioxide rich natural gas in ultra-deepwater oil fields, Journal of Cleaner Production (2016), http://dx.doi.org/10.1016/j.jclepro.2016.06.073



FPSOs Replicantes / Replicants FPSOs

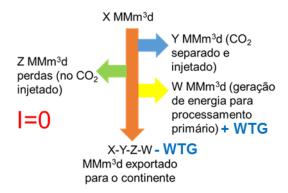


(X-Y-Z-W-WTG)/X = ?

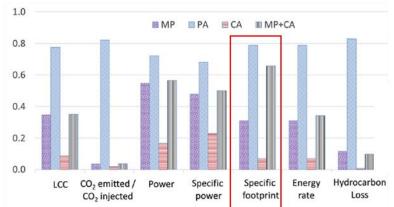
Depende de:

- Teor de CO₂ no gás bruto
- Tecnologia de separação de CO₂

Araújo et al., Comparative analysis of separation technologies for processing carbon dioxide rich natural gas in ultra-deepwater oil fields, Journal of Cleaner Production (2016), http://dx.doi.org/10.1016/j.jclepro.2016.06.073



FPSOs Replicantes / Replicants FPSOs



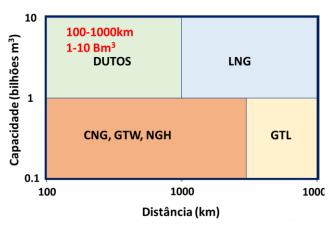
(X-Y-Z-W-WTG)/X = ?

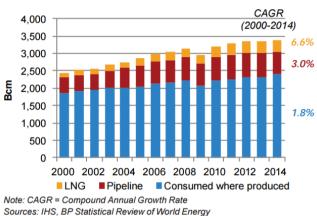
Depende de:

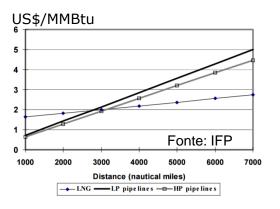
- Teor de CO₂ no gás bruto
- Tecnologia de separação de CO₂

Não basta ser barato, tem que ser pequeno

Araújo et al., Comparative analysis of separation technologies for processing carbon dioxide rich natural gas in ultra-deepwater oil fields, Journal of Cleaner Production (2016), http://dx.doi.org/10.1016/j.jclepro.2016.06.073

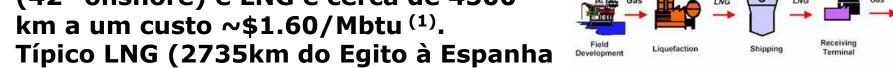



Tão distante/ so distant



Condições de contorno locais / Local boundary conditions

- Gás não-convencional: distante, alto nível de impureza (CO₂) e não pode ser consumido localmente, precisando ser transportado.
- A distância do gás não-convencional ao mercado é o fator chave na seleção do modal de transporte.



Tão distante/ so distant

Custos de transporte / Transport costs

 Distância de breakeven entre gasodutos (42" onshore) e LNG é cerca de 4500 km a um custo ~\$1.60/Mbtu (1).

(2) - (Capacidade: 3.5Mtpa ou 4.8 Bm³a. Planta de liquefação: 1.0 US\$/MMBtu;

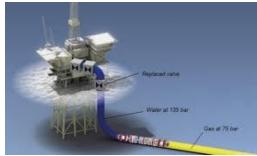
Transporte: 0.40 US\$/MMBtu;

Regaseificação: 0.41 US\$/MMBtu): 1.81

US\$/MMBtu.

 Típico Duto (MEDGAZ da Algéria à Espanha)⁽²⁾ - Capacidade: 8 Bm³a, distância (onshore) de 745km: 0.72 US\$/MMBtu.

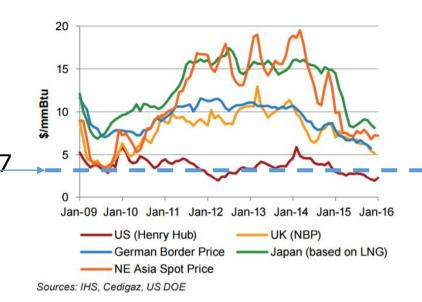
- (1) http://pages.hmc.edu/evans/PipelinesTokyo.pdf
- (2) https://www.ecn.nl/fileadmin/ecn/units/bs/INDES/indes-pc2_paper.pdf
- (3) http://www.ogj.com/articles/print/volume-111/issue-02/special-report--worldwide-pipeline-construction/worldwide-pipeline-construction-crude-products.html


Tão distante/ so distant

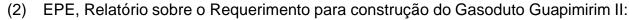
Custos de transporte / Transport costs

- Dutos Onshore x Offshore (base EUA): Onshore: \$4.99 MUS\$/km (2012),
 Offshore: \$8.64 MUS\$/km (2009)⁽²⁾ (CEPCI 2009 = 521.9, CEPCI 2012 = 584.6). →
 Offshore/Onshore = 1.94.
- Custo estimado de transporte por dutos submarinos (FPSO → UPGN): 1.4 US\$/MMBtu

- (1) http://pages.hmc.edu/evans/PipelinesTokyo.pdf
- (2) https://www.ecn.nl/fileadmin/ecn/units/bs/INDES/indes-pc2_paper.pdf
- (3) http://www.ogj.com/articles/print/volume-111/issue-02/special-report--worldwide-pipeline-construction/worldwide-pipeline-construction-crude-products.html



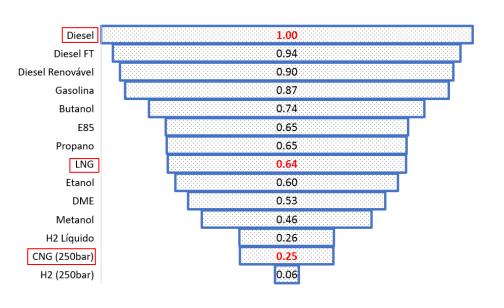
Quanto custa/ how much it costs

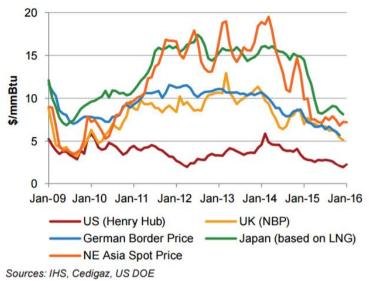


Estimativa (grosseira) de custo / (rough) cost estimate

- Transporte por dutos submarinos (FPSO → UPGN): 1.4 US\$/MMBtu
- Processamento primário (FPSO com MP): \$ 0.87 US\$/MMBtu (estimativa grosseira)
- Custo de processamento (UPGN)^{(1):} 0.7 US\$/MMBtu
 - → Custo na saída da <u>UPGN:</u> 2.97 US\$/MMBTU
- Preço do gás natural do Pré-Sal processado no COMPERJ:
 13.19US\$/MMBtu⁽²⁾

1) <u>www.huntleyinc.com/wp-content/.../PIOGA-Gas-Pricing-and-Economics-sheet.pdf</u>

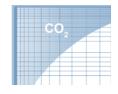


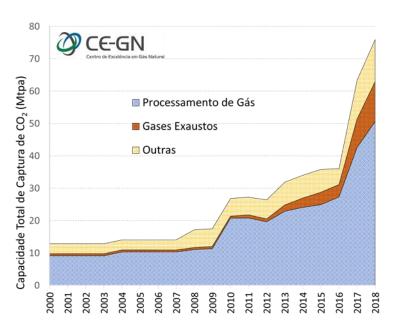


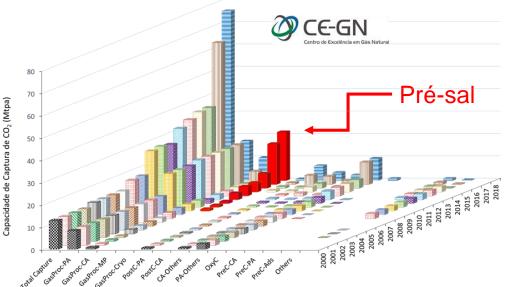
Baixa densidade energética / Low energy density

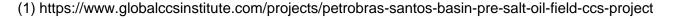
Condições de contorno globais / Global boundary conditions

O gás natural tem **baixa densidade energética** (energia/volume), e preço deprimido no mercado internacional.



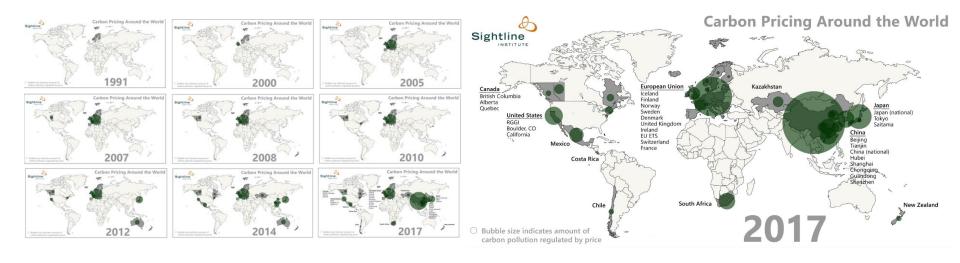



Tão rico em CO₂/ So rich in CO₂



Desafiando o estado-da-arte / Challenging state-of-the-art

Assumindo 20% de CO₂ (conservador), 1Mtpa⁽¹⁾ CO₂ injetado (Piloto de Lula) afeta o cenário mundial de tecnologias de captura e sequestro de CO₂.

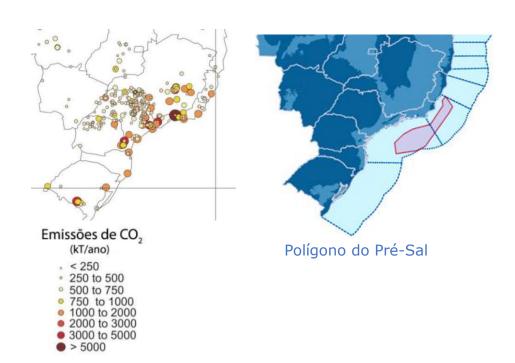


Políticas ambientais/ Environmental policies.

Barreiras ambientais / Enviromental Hurdles

Relevância no cenário de Captura e Sequestro de CO₂: Pré-Sal pode ser o destino geológico de CO₂ capturado onshore e offshore.

http://sightline.wpengine.netdna-cdn.com/wp-content/uploads/2014/11/global-carbon-programs-map-111714b-2083pxl.gif

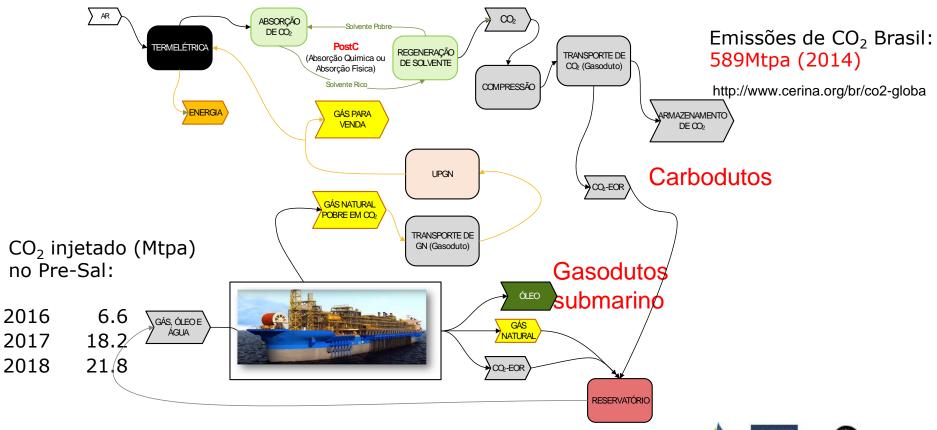


Políticas ambientais/ Environmental policies.

Barreiras ambientais / Enviromental Hurdles

Relevância no cenário de Captura e Sequestro de CO₂: Pré-Sal pode ser o destino geológico de CO₂ capturado onshore e offshore.

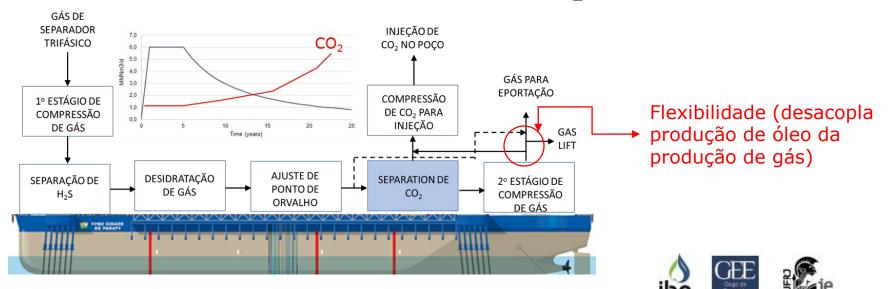
http://licenciamento.ibama.gov.br/Dutos/Gasoduto/Gasoduto%20Rota%203/03%20%20Caracteriza%C3%A7%C3%A3o%20do%20Empreendimento/03%20-%20Caracteriza%C3%A7%C3%A3o%20do%20Empreendimento.pdf



Cadeia Produtiva GN /NG Supply chain

O grande quadro com CCS / The big Picture with CCS

Global CCS Institute: 1Mtpa/Replicante (Conservador)



FPSO

Cenário dinâmico / Dynamic scenario

- Com a injeção de CO₂ continuada (1Mtpa/FPSO), o reservatório enriquece em CO₂ ao longo da operação.
- Há declínio da produção.
- Demanda incerta onshore de gás natural (despacho de termelétricas).
- Para maior flexibilidade, e possibilidade de aumentar a produção (EOR com gás natural), contempla injeção de CO₂ ou do gás natural (1).

FPSO (GOR 250→500m³/m³)

Topside sem espaço / No room left on topside

Projeto para GOR=500m³/m³: (1)

- Manter a produção de óleo do Projeto Replicante (150kbpd) significa produzir
 12MMm³d. Redução para 100kbpd, corresponderá a 8MMm³d.
- Demanda energética sobe para 100MW, contra 75MW dos Replicantes (GOR=250).
- Os replicantes já ocupam 95% da área do deck (VLCC).
- O peso do topside está limitado a 25kt em VLCC, os Replicantes já apresentam 22kt.
- Novo arranjo topside torna-se necessário.

FPSO (GOR 250 \rightarrow 500m³/m³)

Gás exportado em função de CO_2 na carga / Exported gas as function of CO_2 in feed gas

- Gás exportado frente à elevação de CO₂
 na carga⁽¹⁾ diminui em 25% (em relação aos
 Replicantes, projetados para 45% de CO₂)
- Para manter 150kbpd, separação precisaria ser eliminada, mantida a concepção de projeto dos Replicantes⁽¹⁾.

	80						
_	70						
opi	60						
portad de gás	50						
% Gás Exportado / Carga de gás	40						
i Ey	30						
Gás Ex _l Carga	20						
%	10						
	0		Ш	Ш	Ш	Ш	Ш
		10	20	30	40	45	50
			%	CO ₂ r	na car	ga	

Vazão de óleo (kbpd) 150 (Replicantes) 100 150 180 Vazão de gás (Milhão m3/d) 6 8 12 14 Energia requerida (MW) 88 100 150 250 Peso do topside (kton) CO2 - 22 25 40 Com remoção de CO2 22 25 32 45 Área utilizada (%) Sem remoção de CO2 86 90 100 162 Com remoção de CO2 Com remoção de CO2 100 162 100 100	RC	250 m³/m³ (Replicantes)	500 m³/m³			
Sem remoção de CO2 Com remoção de CO2 Sem rem	Vazão de óleo (kbpd)		150 (Replicantes)	100	150	180
Peso do topside (kton) Sem remoção de CO2 - 22 25 40 Érea utilizada (%) Sem remoção de CO2 22 25 32 45 Área utilizada (%) Com remoção de CO2 86 90 100 162	Vazão de gás (Milhão m3/d)	6	8	12	14
Peso do topside (kton) CO2 2 25 40 Com remoção de CO2 22 25 32 45 Sem remoção de CO2 86 90 100 162 Área utilizada (%) Com remoção de CO2 100 162	Energia requerida (MW)		88	100	150	250
CO2 22 25 32 45 Sem remoção de CO2 Área utilizada (%) Com remoção de	Peso do topside	•	-	22	25	40
Área utilizada (%) CO2 Com remoção de	(kton)		22	25	32	45
Com remoção de	Ároa utilizada (%)	•	86	90	100	162
CO2 95 100 (110) 180	Area utilizada (70)	Com remoção de		100	(110)	180

Projeto	Modec FPSO Membrane Skid	BV Replicant CO2 Removal Units	ONEROSA Separex Membrane Module Project
Locação	Brasil	Brasil	Brasil
Ano	2009	2014	2015
Dimensões: lagura x comprimento x altura (m)	10,8 x 15,5 x 16,6	15 x 20 x 22	18 x 20 x 19,5
Área ocupada (m2)	167. 4	300	360
Peso (toneladas)	375	700	663

(1) C. Pinto et al. (2014), https://www.onepetro.org/conference-paper/OTC-25274-MS

Compressores / Compressors

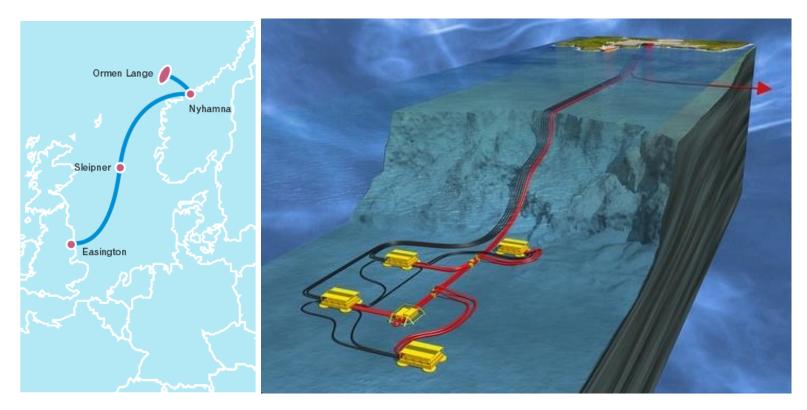
Esforço de compressão / Compression effort

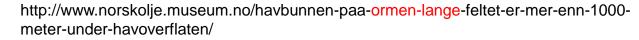
Compressores das FPSOs

FPSO Cidade de São Paulo (Guará)	Peso (toneladas)
CO2 COMPRESSION SKID A	668
CO2 COMPRESSION SKID B	711
CO2 COMPRESSION STAIR TOWER	32
REINJECTION COMPRESSION SKID A	418
REINJECTION COMPRESSION SKID B	416
MAIN COMPRESSION A SKID A	514
MAIN COMPRESSION A SKID B	453
MAIN COMPRESSION B SKID A	530
MAIN COMPRESSION B SKID B	510
PESO TOTAL	4252

FPSO Cidade Angra dos Reis	Peso (toneladas)
Módulo de Injeção de CO2	(832)
Módulo de Injeção de água	978
Módulo de Compressão e Reinjeção de Gás	767

aibel.com/en/docs/dokumenter/presentation-thailand





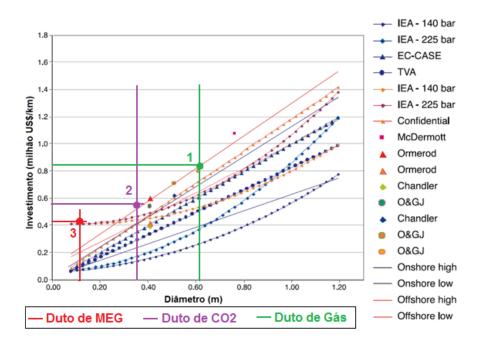
Alternativas tecnológicas / Technological alternatives

"Engenharia fora da caixa" / "Out-of-the-box engineering"

Alternativas tecnológicas / Technological alternatives

"Engenharia fora da caixa" / "Out-of-the-box engineering"

Jéssica dos Santos Cruz de Almeida, PRODUÇÃO OFFSHORE DE GÁS NATURAL RICO EM CO2: CENÁRIO DUTOS SUBSEA COM MEG E PROCESSAMENTO ONHORE, Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Tecnologia de Processos Químicos e Bioquímicos, 2016



Alternativas tecnológicas / Technological alternatives

Esforço de engenharia é necessário / Engineering effort is required

Duto de CO2 de Snohvit					
Custo (milhões US\$)	72,58				
Diâmetro (in)	8				
Comprimento (km)	160				
Custo específico (milhões US\$/in/km)	0,057				
Duto de CO2 proposto					
Custo (milhões US\$)	192,8 7				
Diâmetro (in)	14				
Comprimento (km)	350				
Custo específico (milhões US\$/in/km)	0,039				

Jéssica dos Santos Cruz de Almeida, PRODUÇÃO OFFSHORE DE GÁS NATURAL RICO EM CO2: CENÁRIO DUTOS SUBSEA COM MEG E PROCESSAMENTO ONHORE, Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Tecnologia de Processos Químicos e Bioquímicos, 2016

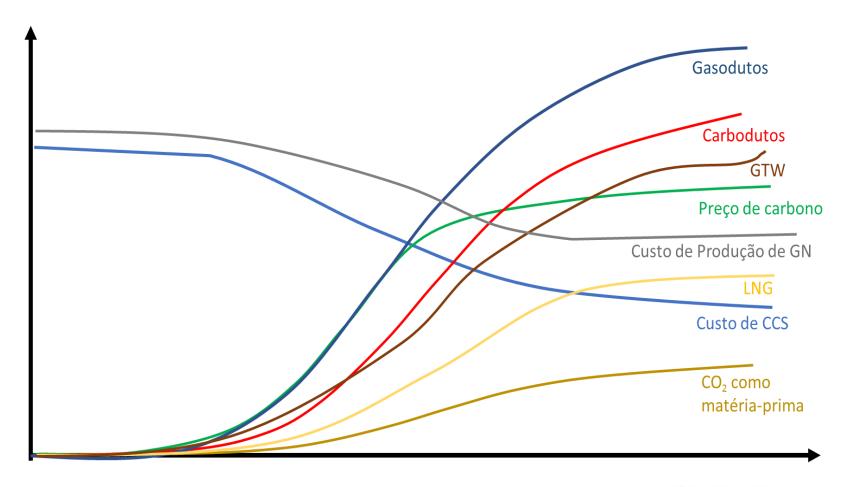
Comentários finais / Final remarks

Os desafios puxam as inovações / Challenges pull innovations

Desafios:

 GOR (gas to oil ratio, m³ gás /m³ óleo): 500Teor de CO₂ no gás bruto: 50% (Libra), (80% Júpiter)

Inovações:


- Hub de Gás Natural
- Hub de CO₂
- Pré-Sal destino para CCS
- GTW com CCS
- Offshore híbrido com Onshore (Dutos subsea e separação criogência onshore), FPSO parcialmente liberada do processamento de gás poderá ter produção de óleo aumentada.
- Modelos de Replicantes adaptados para novos cenários
- Projetos flexíveis

Bola de cristal / Crystal ball

ofelia@eq.ufrj.br www.h2cin.org.br

